Data Structures and Algorithm Analysis

Dr. Syed Asim Jalal Department of Computer Science University of Peshawar

In this Lecture

- Recurrences
- Divide and Conquer Approach
 - > Merge Sort
 - > Merge Sort Analysis

Recurrences

- A recurrence is an equation or inequality that describes itself in terms of its values on smaller inputs.
- Or a recurrence is a function that is defined in terms of
 - 1. one or more base cases, *(stopping conditions)*
 - 2. itself with smaller arguments.
- We get recurrences from recursive algorithms.
- Recursive algorithms call itself again an again until some Base Case is reached.

How to do Analysis of Recursive Algorithms?

- From recursive algorithm we first obtain a recurrence relationship and then
- From the relation we find its solution or equations using one of the Recurrence Solution methods

For example, for the following Recurrence Relation

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ T(n-1) + 1 & \text{if } n > 1 \end{cases}$$

If we solve this recurrence, we will get the following running time.

$$T\left(n\right)=n$$

Some other examples of recurrence relations and their solutions.

$$T(n) = \begin{cases} 1 & \text{if } n = 1\\ 2T(n/2) + n & \text{if } n \ge 1 \end{cases}$$

Solution: $T(n) = n \lg n + n.$

$$T(n) = \begin{cases} 1 & \text{if } n = 1\\ T(n/3) + T(2n/3) + n & \text{if } n > 1 \end{cases}$$

Solution: $T(n) = \Theta(n \lg n).$

Q. How we get the solutions? A. By using one of the methods of solving recurrences.

Methods for Solving Recurrences

- Following are the methods to find out a solution or bounds for recurrence relations.
 - 1. Recursion tree method
 - 2. Iteration method
 - 3. Substitution method
 - 4. Master theorem method

"Divide and Conquer" strategy

- Recurrences are derived from Recursive algorithms which are based on recursion.
- Recursion usually follows "Divide and Conquer" strategy
 - In algorithms, it means to divide the problem of a large input into smaller pieces of input data
 - Recursively divide the input until certain smaller size is reached. This stops the division of the input.
 - Then solve the smaller problems and combine the piecewise results to get a global solution for the original large input

"Divide and Conquer" strategy

Divide the problem into a number of subproblems

Conquer the sub-problems by solving them recursively. If the sub-problem sizes are small enough (Base Case), just solve the sub-problems in a straightforward manner.

Combine the solutions to the sub-problems into the solution for the original problem.

Merge Sort

- Merge sort is a sorting algorithm
- Merge sort follows the "divide and conquer" strategy and is a recursive algorithm
- It has better performance then the insertion sort, bubble sort and selection sort for larger data

Divide & Conquer strategy in Merge Sort

Divide:

> Divide the *n*-elements list to be sorted into two subsequences of n/2 elements each

Conquer:

> Sort the two subsequences recursively using *Merge* Sort

Combine:

> Merge the two sorted subsequences to produce the sorted sequence 10

- The recursion stops when the sub-sequence to be sorted reaches the length of 1. Sequence of length 1 is already in sorted order, and nothing in reality is done for sorting.
- The actual sorting related activity in the merge sort occurs during the merging process of the two sorted already sub-sequences. i.e the combine step.

Merge sort example

Merge sort Algorithm

MERGE-SORT(A, p, r)if
$$p < r$$
 \triangleright Check for base casethen $q \leftarrow \lfloor (p+r)/2 \rfloor$ \triangleright DivideMERGE-SORT(A, p, q) \triangleright ConquerMERGE-SORT(A, q + 1, r) \triangleright ConquerMERGE(A, p, q, r) \triangleright Combine

- The key operation of the merge sort algorithm is the merging of two sorted sequences in the "combine" step. To perform the merging, we use an auxiliary procedure *MERGE(A, p, q, r),* where A is an array and p, q, and r are indices numbering elements of the array such that p ≤ q < r.
- The procedure assumes that the subarrays A[p : q] and A[q+ 1: r] are in sorted order.
- It merges them to form a single sorted subarray that replaces the current subarray A[p: r].

Pseudocode:

MERGE(A, p, q, r) n_1 : calculate the size of left sorted array $n_1 \leftarrow q - p + 1$ n₂: calculate the size of left sorted array $n_2 \leftarrow r - q$ create arrays $L[1 \dots n_1 + 1]$ and $R[1 \dots n_2 + 1]$ Create two temp arrays for $i \leftarrow 1$ to n_1 Copy left sorted array do $L[i] \leftarrow A[p+i-1]$ for $j \leftarrow 1$ to n_2 Copy second sorted array do $R[j] \leftarrow A[q+j]$ $L[n_1+1] \leftarrow \infty$ Assign very large values at both $R[n_2+1] \leftarrow \infty$ array's last locations. $i \leftarrow 1$ $j \leftarrow 1$ for $k \leftarrow p$ to r Merge and copy two sorted arrays while do if $L[i] \leq R[j]$ comparing values then $A[k] \leftarrow L[i]$ $i \leftarrow i + 1$ else $A[k] \leftarrow R[j]$ $j \leftarrow j+1$ 17

Example: A call of MERGE(9, 12, 16)

Asim Jalal

Design & Analysis of Algorithms

18

What if n is odd??

Analysis of Merge Sort

- Merge Sort is a Recursive Algorithm
- In order to analyze any recursive Algorithm we need to
 - 1. First find the **recurrence relation** for the algorithm
 - 2. Then **solve the recurrence** relation to find running time.

How to find a Recurrence Relation???

Finding a Recurrence Relation from divide-andconquer Algorithm

In a Divide and conquer algorithms T (n) = running time on a problem of size n.

- If the problem size is small enough (say, n ≤ c for some constant c), we have a <u>base case</u>.
 - > In divide & conquer the solution of base case is always constant time: $\Theta(1)$
- Otherwise, we divide problem into 'a' subproblems, each 1/b the size of the original.

> In Merge Sort, a=2, b=2.

Finding a Recurrence Relation from divide-and-conquer Algorithm

- 'a' sub-problems would take <u>a T (n/b)</u> time
 - > There are 'a' sub-problems to solve, each of size 'n/b'.
 - > T(n) is the time entire problem of size n.
 - > Therefore sub-problem of size n/b would take T(n/b) time.
 - > Therefore 'a' sub-problems take a T (n/b) time.
- Let the time to divide a size-n problem be <u>D(n)</u>
- Time to combine solutions be <u>C(n).</u>
- We obtain the following relation for the recurrence.

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le c ,\\ aT(n/b) + D(n) + C(n) & \text{otherwise} \end{cases}$$

Analysis of Merge Sort

- We now apply analysis procedure of divide and conquer on Merge Sort Algorithm
- For simplicity, assume that n is a power of 2
 - Each divide-step yields two sub-problems, both of size exactly n/2.
- The base case occurs when n = 1.

• When $n \ge 2$, Merge Sort steps are followed.

Recurrence Relation for Merge Sort

Divide:

- > Divide is computing value of q as the average of p and r
- > It takes constant time $D(n) = \Theta(1)$

Conquer:

Recursively solve 2 sub-problems, each of size n/2
2T (n/2).

Combine:

> MERGE *n*-element sub-array takes (*n*) time

$\succ C(n) = \Theta(n).$

Cost of Combine: Merge ()

Running time of *MERGE(A, p, q, r)* procedure

The first two **for** loops take $\Theta(n1 + n2) = \Theta(n)$ time.

The last *for* loop makes at most *n* iterations, each taking constant time, for $\Theta(n)$ time. *Pseudocode:*

- T(n) = $\Theta(n1 + n2) + \Theta(n)$
- **T**(n) = $\Theta(n) + \Theta(n)$
- $T(n) = \Theta(n) + \Theta(n)$
- Therefore, cost of Combine is $T(n) = \Theta(n)$

```
MERGE(A, p, q, r)
n_1 \leftarrow q - p + 1
n_2 \leftarrow r - q
create arrays L[1 \dots n_1 + 1] and R[1 \dots n_2 + 1]
for i \leftarrow 1 to n_1
     do L[i] \leftarrow A[p+i-1]
for j \leftarrow 1 to n_2
     do R[i] \leftarrow A[q+i]
L[n_1+1] \leftarrow \infty
R[n_2+1] \leftarrow \infty
i \leftarrow 1
i \leftarrow 1
for k \leftarrow p to r
     do if L[i] \leq R[j]
             then A[k] \leftarrow L[i]
                    i \leftarrow i + 1
             else A[k] \leftarrow R[j]
                                                    26
                     j \leftarrow j+1
```

Since D(n) = O(1) and C(n) = O(n), summed together they give a function that is linear in n:
 O(n)

$$\checkmark D(n) + C(n) = \Theta(n)$$

Hence recurrence for merge sort running time is

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 ,\\ 2T(n/2) + \Theta(n) & \text{if } n > 1 . \end{cases}$$

we will next apply a Recurrence Relation solving technique to get the running time for Merge Sort.