
Dr. Syed Asim Jalal
Department of Computer Science

University of Peshawar

Data Structures and Algorithm Analysis

15

Design & Analysis of Algorithms 2Asim Jalal

In this Lecture

 Recurrences
 Divide and Conquer Approach
Merge Sort
Merge Sort Analysis

Recurrences

 A recurrence is an equation or inequality that
describes itself in terms of its values on
smaller inputs.

 Or a recurrence is a function that is defined in
terms of

1. one or more base cases, (stopping conditions)
2. itself with smaller arguments.

 We get recurrences from recursive algorithms.
 Recursive algorithms call itself again an again until some

Base Case is reached.

3

How to do Analysis of Recursive Algorithms?

 From recursive algorithm we first obtain a recurrence
relationship and then

 From the relation we find its solution or equations using
one of the Recurrence Solution methods

 For example, for the following Recurrence Relation

 If we solve this recurrence, we will get the following running
time.

4

Some other examples of recurrence relations
and their solutions.

Q. How we get the solutions?
A. By using one of the methods of solving
recurrences.

5

Design & Analysis of Algorithms 6Asim Jalal

Methods for Solving Recurrences

 Following are the methods to find out a
solution or bounds for recurrence relations.

1. Recursion tree method
2. Iteration method
3. Substitution method
4. Master theorem method

"Divide and Conquer” strategy

 Recurrences are derived from Recursive algorithms
which are based on recursion.

 Recursion usually follows “Divide and Conquer”
strategy
 In algorithms, it means to divide the problem of a large

input into smaller pieces of input data

 Recursively divide the input until certain smaller size is
reached. This stops the division of the input.

 Then solve the smaller problems and combine the
piecewise results to get a global solution for the original
large input

7

“Divide and Conquer” strategy

 Divide the problem into a number of sub-
problems

 Conquer the sub-problems by solving them
recursively. If the sub-problem sizes are
small enough (Base Case), just solve the
sub-problems in a straightforward manner.

 Combine the solutions to the sub-problems
into the solution for the original problem.

8

Merge Sort
 Merge sort is a sorting algorithm

 Merge sort follows the “divide and conquer”
strategy and is a recursive algorithm

 It has better performance then the insertion
sort, bubble sort and selection sort for larger
data

9

Divide & Conquer strategy in Merge Sort

 Divide:
Divide the n-elements list to be sorted into two

subsequences of n/2 elements each

 Conquer:
 Sort the two subsequences recursively using Merge

Sort

 Combine:
Merge the two sorted subsequences to produce the

sorted sequence 10

 The recursion stops when the sub-sequence to be
sorted reaches the length of 1. Sequence of length 1
is already in sorted order, and nothing in reality is
done for sorting.

 The actual sorting related activity in the merge sort
occurs during the merging process of the two sorted
already sub-sequences. i.e the combine step.

11

Merge sort example
1 5 8 3 4 2 1 0

1 5 8 3

1 5 8 3

1 5 8 3

1 5 3 8

1 3 5 8

4 2 1 0

4 2 1 0

4 2 1 0

2 4 0 1

0 1 2 4

0 1 1 2 3 4 5 8

Divide

Merging

Simple case

12

• The key operation of the merge sort algorithm is the merging of two sorted sequences in
the "combine" step. To perform the merging, we use an auxiliary procedure MERGE(A,
p, q, r), where A is an array and p, q, and r are indices numbering elements of the array
such that p ≤ q < r.

• The procedure assumes that the subarrays A[p : q] and A[q+ 1: r] are in sorted order.
• It merges them to form a single sorted subarray that replaces the current subarray A[p:

r].

Merge sort Algorithm

13

Design & Analysis of Algorithms 15Asim Jalal

Design & Analysis of Algorithms 16Asim Jalal

Design & Analysis of Algorithms 17Asim Jalal

n1: calculate the size of left sorted array
n2: calculate the size of left sorted array

Create two temp arrays

Copy left sorted array

Copy second sorted array

Merge and copy two sorted arrays while
comparing values

Assign very large values at both
array’s last locations.

Design & Analysis of Algorithms 18Asim Jalal

Design & Analysis of Algorithms 19Asim Jalal

What if n is odd??

Analysis of Merge Sort

 Merge Sort is a Recursive Algorithm
 In order to analyze any recursive Algorithm we need

to
1. First find the recurrence relation for the

algorithm
2. Then solve the recurrence relation to find

running time.

20

How to find a Recurrence
Relation???

Design & Analysis of Algorithms 21Asim Jalal

Finding a Recurrence Relation from divide-and-
conquer Algorithm

 In a Divide and conquer algorithms
T (n) = running time on a problem of size n.

 If the problem size is small enough (say, n ≤ c for
some constant c), we have a base case.
 In divide & conquer the solution of base case is always

constant time: Θ(1)

 Otherwise, we divide problem into ‘a’ sub-
problems, each 1/b the size of the original.
 In Merge Sort, a=2, b = 2. 22

 ‘a’ sub-problems would take a T (n/b) time
 There are ‘a’ sub-problems to solve, each of size ‘n/b’.
 T(n) is the time entire problem of size n.
 Therefore sub-problem of size n/b would take T (n/b) time.
 Therefore ‘a’ sub-problems take a T (n/b) time.

 Let the time to divide a size-n problem be D(n)
 Time to combine solutions be C(n).
 We obtain the following relation for the recurrence.

Finding a Recurrence Relation from divide-and-conquer Algorithm

23

 We now apply analysis procedure of divide
and conquer on Merge Sort Algorithm

 For simplicity, assume that n is a power of 2
Each divide-step yields two sub-problems, both

of size exactly n/2.
 The base case occurs when n = 1.
 When n ≥ 2, Merge Sort steps are followed.

Analysis of Merge Sort

24

Design & Analysis of Algorithms 25Asim Jalal

Recurrence Relation for Merge Sort

 Divide:
 Divide is computing value of q as the average of p and r

 It takes constant time D(n) = Θ(1)

 Conquer:
 Recursively solve 2 sub-problems, each of size n/2
 2T (n/2).

 Combine:
 MERGE n-element sub-array takes (n) time

 C(n) = Θ(n).

Cost of Combine: Merge ()
Running time of MERGE(A, p, q, r) procedure
The first two for loops take Θ(n1 +n2) = Θ(n) time.
The last for loop makes at most n iterations, each taking
constant time, for Θ(n) time.

 T(n) = Θ(n1 + n2) + Θ(n)
 T(n) = Θ(n) + Θ(n)
 T(n) = Θ(n) + Θ(n)

 Therefore, cost of Combine is

T(n) = Θ(n)

26

Design & Analysis of Algorithms 27Asim Jalal

 Since D(n) = Θ(1) and C(n) = Θ(n), summed
together they give a function that is linear in n:
Θ(n)

D(n) + C(n) = Θ(n)
 Hence recurrence for merge sort running time is

Design & Analysis of Algorithms 28Asim Jalal

we will next apply a Recurrence
Relation solving technique to get the

running time for Merge Sort.

	Slide Number 1
	In this Lecture
	Recurrences
	Slide Number 4
	Some other examples of recurrence relations and their solutions.
	Methods for Solving Recurrences
	"Divide and Conquer” strategy
	“Divide and Conquer” strategy
	Slide Number 9
	Divide & Conquer strategy in Merge Sort
	Slide Number 11
	Merge sort example
	Merge sort Algorithm
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Analysis of Merge Sort
	How to find a Recurrence Relation???
	Finding a Recurrence Relation from divide-and-conquer Algorithm
	Finding a Recurrence Relation from divide-and-conquer Algorithm
	Analysis of Merge Sort
	Recurrence Relation for Merge Sort
	Cost of Combine: Merge ()
	Slide Number 27
	we will next apply a Recurrence Relation solving technique to get the running time for Merge Sort.

